Gradient Techniques For Nanotechnology Development

Michael J. Fasolka

Alamgir Karim, Eric J. Amis

Polymers Division
National Institute of Standards and Technology

ACS NERM: June 16, 2003

An "impromptu" gradient experiment

Thin film morphology of PS-PLMA block copolymer

M.J. Fasolka and A.M. Mayes et al, Macromolecules 33 5702 (2000)

AFM height

AFM

phase

- AFM of droplet edge
- Morphology/thickness relationships

Advantages:

- Illuminates morphology/thickness relationship in a single micrograph
- Single high-info specimen with uniform processing

Drawbacks:

- Generally Qualitative
- Limited specimen scope
 - steep gradient
- Hard to reproduce

Building Better Gradient Techniques

- Combi and high-throughput methods for *Materials Research*
- 21 Member industrial consortium
- Education and Outreach

Continuous Gradient Specimens

 Gradual and steady change in a property as a function of distance

NCMC Gradient Specimens

- Properties of interest to materials researchers
- Tailored gradient scope and steepness
- Reproducible fabrication

Crossed-Gradient Combinatorial Libraries

- Orthogonal arrangement of 2 gradient specimens
- Includes every combination of 2 variables within scope of gradients

NCMC Gradient Toolbox

Polymer Film Thickness Gradient (C. Meredith)

NIST Gradient Flow Coater for dilute polymer solutions

Automated Spot Interferometer

Gradient Range: 20-500nm in 100 nm steps

Surface Energy Gradient (A. Sehgal, A. Crosby, M. Fasolka)

UV-ozone Exposure Gradient Device

Exposure dependent SAM conversion

Automated contact ∠ measurements

Gradient Range: 20-78 mJ/m² Continuous or step-like

NCMC Gradient Toolbox

Temperature Gradient (K. Beers, C. Stafford)

Gradient Hot-stage

Gradient Range: 20 °C to 250 °C in 100 °C steps

Other Gradients and Gradients in Development

- Composition Gradients (Polymers, Additives from Dilute Solution)
- Surface Texture Gradients (Patterned and Random Roughness)
- Cross-linking Gradients

Gradient Applications in Nanotechnology

Examples from NCMC Research

- Thorough Behavior Mapping
 Ultra-high information density specimens
- Process or Parameter Optimization
 Precise determination of best conditions
- Advancement of Nano-scale Measurements
 Reference Substrates for Advanced SPM Techniques

Block Copolymer (BC) Thin Film Basics

Review: M.J. Fasolka & A.M. Mayes, Annu. Rev. Mat. Sci. 31, 323 (2001)

- Nanometric self assembly
 - L₀=10nm 100nm
- Surface Directed Morphology

Mapping: BC Film Gradient Combi Library

A.P. Smith et al, Macromolecules Rapid Communications 2003; 24(1): 131 A.P. Smith et al, Physical Review Letters 2001; 8701(1): 5503

Polystyrene-b-Polymethylmethacryate film (After T.P. Russell)

Optimization: BC Film Gradient on Patterned Substrate

M.J. Fasolka, T.A. Germer, A. Karim, & E.J. Amis, NIST

Goals:

- Map behavior of BC Films on topographically structured substrates
- Find conditions for "anti-conformal" film on a specific substrate

Pseudo random array of pits

High-throughput Gradient Experiment:

Optimization: BC Film Gradient on Patterned Substrate

Conformal

Non-conformal

BC Film on Patterned Substrate

When and Why do anti-conformal films occur?

- Island area equals pit area (15% pit area \Rightarrow 0.15nL₀)
- Pits nucleate islands

Measurements: Gradient Reference Substrate for CFM

M.J. Fasolka, T. Nguyen, A. Karim, K. Briggman, NIST

Advance Chemical Force Microscopy as a quantitative measurement technique

C. M. Lieber, Harvard

Reference Specimens that:

- Calibrate image contrast
- Challenge sensitivity

Contact ∠

CFM done here
15 mm pitch lines

Contact ∠

- Chemical contrast gradient
- Relates contrast to traditional analysis
- Gauges sensitivity

Fabrication and Calibration of Specimen

- Hydrophilic and Hydrophobic SAMs printed with PDMS stamp
- Gradient in UV exposure gradually converts hydrophobic SAM to hydrophilic species.
- Contact ∠ measurements calibrate contrast in the patterned area.

Measurements: Gradient Reference Substrate for CFM

Contact-Mode Friction AFM Images

Print: (CH₂)₁₇-CH₃Thiol SAM

Fill: (CH₂)₁₅-COOH Thiol SAM

Linear UV Exposure Ramp: 0 - 60s

Summary: Gradients for Nanotechnology

NIST Combinatorial Methods Center Capabilities:

- Purpose and Scope
- Gradient Tool Box Examples
 - Thickness
 - Surface Energy
 - Temperature and others

Utility of Gradients for Nanotechnology Development

- Thorough Behavior Mapping
 Ultra-high information density BC Film Library
- Process or Parameter Optimization
 Determination of conditions for anti-conformal films
- Advancement of Nano-scale Measurements
 Reference Substrates for Chemical Force Microscopy

Contributors

The NIST Combi Methods Center Core Team:

Cher Davis Alamgir Karim M.J. Fasolka Eric J. Amis Chris Stafford Aaron Forster Arnaud Chiche Wenhua Zhang Kathryn Beers Joao Cabral Howard Walls Alex Norman

NCMC Alumni

Amit Sehgal

A. Paul Smith (Columbia Chem)

Al Crosby (U. Mass)

Chris Harrison (Schlumberge)

Carson Meredith (GA Tech)

NIST Collaborators on Examples:

Thomas A. Germer (Optical Technology Division)

Kimberly Briggman (Optical Technology Division)

Tihn Nguyen (Building and Fire Research)

Advertisements: (ask for a CD)

Interested in Combinatorial and High-Throughput Materials Research?

Post-doctoral Positions are Available!

- Combi and HTE for Polymers and Nanotechnology
- **Excellent opportunities for industrial interaction**

Contact: Michael Fasolka at mfasolka@nist.gov

NIST Combinatorial Methods Center: www.nist.gov/combi

NCMC Member Consortium:

